

Lecture 7 Noise Removal & Contrast Enhancement

Guoxu Liu

Weifang University of Science and Technology

liuguoxu@wfust.edu.cn

November 13, 2020

Outline

□ Noise Removal

- Noise Models
- **Binomial Smoothing**
- Gaussian Smoothing
- Median Filtering, etc
- □ Contrast Enhancement
	- Windowing
	- **Histogram Equalization**
	- **Unsharp Masking**
	- Contrast Variance Enhancement, etc

Color Channel Images

Introduction

□ Noise Removal

- **Detect & remove unwanted noise**
- Difficulty: what is noise? where is?
- Assumption: smoothness of intensity and color
- Local Averaging: common method of replacing anomalous pixels with values derived from nearby pixels
- Side Effect: blur output images

$$
\frac{1}{9} \begin{array}{|c|c|c|} \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline \end{array}
$$

- To increase visibility of features of interest by amplifying local variations in color or intensity
- Side effect: amplifying also noise typically

□ Challenges in Color Images

- Should retain chromatic information, particularly hue
- Approaches: manipulate only image intensity or work directly with vector-valued pixels

□ Noise Models

■ Additive noise model: the simplest one

 $g(x, y) = f(x, y) + n(x, y)$

 $g(x, y)$: observed image, $f(x, y)$: true image, $n(x, y)$: noise image

- \blacksquare $n(x, y)$ can be modeled
	- \checkmark Gaussian distribution with zero mean
	- \checkmark uniform, Poisson, or exponential distribution

 \checkmark impulse noise

In RGB space, $g_r(x, y) = f_r(x, y) + n_r(x, y)$ $g_a(x, y) = f_a(x, y) + n_a(x, y)$ $g_h(x, y) = f_h(x, y) + n_h(x, y)$

□ Signal-to-Noise Ratio

- To characterize noise in view of how additive noise is perceived
- SNR In decibels (dB)

$$
SNR = 10 \log_{10} \left(\frac{\sigma_f^2}{\sigma_n^2} \right)
$$

 σ_f^2 , σ_n^2 : variance of image and noise, respectively

- **PSNR: Peak SNR**
	- \checkmark The variance of image can be approximated by squaring the range of intensities

$$
PSNR = 10 \log_{10} \left(\frac{L^2}{\sigma_n^2} \right)
$$

□ Temporal Smoothing

Averaging K independent observations of an image $f(x, y)$, corrupted with zero mean Gaussian noise with variance σ_n^2

$$
\frac{g_k(x, y) = f(x, y) + n_k(x, y)}{g(x, y) = \frac{1}{K} \sum_{k=1}^{K} g_k(x, y) = f(x, y) + \overline{n}(x, y)}
$$

where $\overline{n}(x, y) = \frac{1}{K} \sum_{k=1}^{K} n_k(x, y)$

$$
\begin{pmatrix} \bullet \\ \bullet \end{pmatrix}
$$

$$
\sigma_{\overline{n}}^2 = \frac{1}{K} \sigma_{n}^2 \quad \Rightarrow \quad SNR_{\overline{g}} = SNR_{g} + 10 \log_{10} K
$$

$$
SNR_{\overline{g}} = 10 \log_{10} \left(\frac{\sigma_f^2}{\sigma_n^2 / K} \right) = 10 \log_{10} \left(\frac{\sigma_f^2}{\sigma_n^2} \right) + 10 \log_{10} K = SNR_g + 10 \log_{10} K
$$

 n_i , $i = 1, L$, K independent identically distributed random variables $E[n_i] = \mu_{n_i}$, $Var(n_i) = E[(n_i - \mu_{n_i})^2] = \sigma_n^2$, $i = 1, L$, K n_i 's are uncorrelated since, for $i \neq j$, $E[(n_i - \mu_n)(n_i - \mu_n)] = E[n_i]E[n_i] - \mu_n(E[n_i] + E[n_i]) + \mu_n^2 = 0$ Another random variable $\overline{n} = (1/K)\{n_1 + L + n_K\}$ $E[\overline{n}] = E[(1/K)\{n_1 + L + n_K\}] = (1/K)\{E[n_1] + L + E[n_K]\} = (1/K)\{K\mu_n\} = \mu_n$ $Var(\overline{n}) = E[(\overline{n} - \mu_{\nu})^2] = E[\{(1/K)(n_1 + L + n_{\nu}) - \mu_{\nu}\}^2]$ $= E[(1/K^2)\{(n_1-\mu_n)+L+(n_{K}-\mu_n)\}^2]$ $= (1/K^2)\{E[(n_1 - \mu_n)^2] + L + E[(n_k - \mu_n)^2]\}$ Quncorrelated $=(1/K^2)\{Var(n_1)+L+Var(n_k)\}=(1/K^2)\{K\sigma_n^2\}=(1/K)\sigma_n^2$

or

п.

$$
Var(\overline{n}) = E[(\overline{n} - \mu_n)^2] = E[\overline{n}^2] - \mu_n^2 = E[\{(1/K^2)(n_1 + L + n_K)^2] - \mu_n^2
$$

\n
$$
= (1/K^2)E[(n_1 + L + n_K)^2] - \mu_n^2
$$

\n
$$
= (1/K^2)\left\{\sum_{i=1}^K E[n_i^2] + 2\sum_{i=1}^{K-1} \sum_{j=i+1}^K E[n_i]E[n_j]\right\} - \mu_n^2
$$

\n
$$
= (1/K^2)\left\{\sum_{i=1}^K E[n_i^2] + 2\sum_{i=1}^{K-1} \sum_{j=i+1}^K \mu_n^2\right\} - \mu_n^2
$$

\n
$$
= (1/K^2)\sum_{i=1}^K E[n_i^2] + (1/K^2)2\frac{K(K-1)}{2}\mu_n^2 - \mu_n^2
$$

\n
$$
= (1/K^2)\sum_{i=1}^K E[n_i^2] - (1/K)\mu_n^2
$$

\n
$$
= (1/K^2)\sum_{i=1}^K (E[n_i^2] - \mu_n^2) = (1/K^2)\sum_{i=1}^K E[(n_i - \mu_n)^2]
$$

\n
$$
= (1/K^2)\{K\sigma_n^2\} = (1/K)\sigma_n^2
$$

□ Spatial Smoothing

■ Applicable to when separate observations are not available

■ Convolution

■ Mask design

- \checkmark A single lobe shape: weighted averaging
- \checkmark Circularly symmetric: rotation invariant
- \checkmark Normalized form: to keep the range of values
- Associability of convolution

 $m(x, y) * [m(x, y) * g(x, y)] = [m(x, y) * m(x, y)] * g(x, y)$

■ Mask design

- \checkmark A single lobe shape: weighted averaging
- \checkmark Circularly symmetric: rotation invariant
- \checkmark Normalized form: to keep the range of values
- Associability of convolution

 $m(x, y) * [m(x, y) * g(x, y)] = [m(x, y) * m(x, y)] * g(x, y)$

□ Convolution Theorem

 $m(x, y) * g(x, y) \Leftrightarrow M(u, v)G(u, v)$ $m(x, y)g(x, y) \Leftrightarrow M(u, v) * G(u, v)$ $g(x, y) = m(x, y) * g(x, y) = \Im^{-1}{M(u, v)G(u, v)}$

■ Convolution operation \rightarrow Linear operation

- \blacksquare Work in spatial domain $vs.$ frequency domain
	- \checkmark Convolution of an $N \times N$ image with $M \times M$ mask: O(N^2M^2)
	- \checkmark Fast Fourier Transformation (FFT): $O(N^2 \log_2 N)$
	- \checkmark Break-even point commonly $10 \leq M \leq 15$

□ Gaussian Smoothing

- Repeated convolution with any smoothing mask
	- \rightarrow Converge to a Gaussian function

$$
\exp\left(\frac{x^2 + y^2}{-2\sigma^2}\right) \Leftrightarrow \sqrt{2\pi}\sigma \exp\left(\frac{u^2 + v^2}{-2\alpha^2}\right), \alpha = \frac{1}{2\pi\sigma}
$$

$$
m(x, y) = G(x, y; \sigma) \Leftrightarrow M(u, v) = \sqrt{2\pi}\sigma G(u, v; \frac{1}{2\pi\sigma})
$$

- Different amount of smoothing by varying standard deviation
- Rotationally symmetric, single lobe
- Separable: successive convolution of two 1D Gaussian

Repeated convolution with any smoothing mask converges to a Gaussian function ???

Nov 13, 2020 *07010667 Digital Image Processing* 15

 $\overline{3}$

6

 $\mathbf{1}$

 $7\overline{ }$

 $\overline{3}$

 $\mathbf{1}$

6

Successive convolution of two 1D Gaussian ???

\square Binomial $vs.$ Gaussian Filter

■ Gaussian filter can be excellently approximated by the coefficients of binomial expansion

$$
(1+x)^n = {}_nC_0 + {}_nC_1x + {}_nC_2x^2 + \mathsf{L} + {}_nC_nx^n
$$

□ Noise Removal in Each Color Component

- **Effective when additive noise can be modeled using a uniform or** Gaussian distribution
- **Less successful for impulse noise**
	- \rightarrow corrupt color and intensity of adjacent points

Nov 13, 2020 13, 2020 13, 2020 12, 2020 12, 2020 12, 2020 12, 2020 12, 2020 12, 2020 12, 2020 12, 2020 12, 2020 12, 2020 12, 2020 12, 2020 12, 2020 12, 2020 12, 2020 12, 2020 12, 2020

□ Median Filtering

- Replace a pixel value with the median value of neighbor pixels
- Weighted averaging effect + impulse removal
- Retain edges well
- Its application to each color component causes often chromatic shifts, particularly near edges

□ Vector Median

- Treat RGB values as vectors and calculate vector median
- \blacksquare Not natural way to sort vectors in RGB space
- **Property:** sum of distances between all vectors and the median is less than sum of distances to any other vector

$$
S_m = \sum_{i=1}^{K} \|\mathbf{v}_m - \mathbf{v}_i\| < \sum_{i=1}^{K} \|\mathbf{v}_j - \mathbf{v}_i\|, \text{ for } \forall j \neq m
$$

 $\blacksquare K^2$ distance calculations are relatively time consuming

$$
\sum_{m} S_{m} = \left\| v_{m} - \overline{v} \right\| < \left\| v_{j} - \overline{v} \right\|, \text{ for } \forall j \neq m
$$

■ 'plus sign' shaped neighborhoods are more effective than circular neighborhoods

□ Anisotropic Diffusion Approach

- Vary size and shape of smoothing neighborhoods in different parts of image based on image content
- (e.g.) Apply smoothing parallel to edges and not perpendicular to edges

□ Contrast

- A measure of sharpness
- Intensity or color variations in a local area
- \blacksquare High contrast: easy to locate object boundaries and distinctive features within objects
- Contrast enhancement

 \rightarrow Amplifying local intensity or color variations within an image, thereby increasing feature visibility

□ Windowing

- A point operator: $g(x, y) = m(f(x, y))$
- **Stretch** the range of interest $[I_{\min}, I_{\max}]$ to appropriate display range $[D_{\min}, D_{\max}]$
- Clip values out of the interest range
- Color windowing on each of color channels separately
	- \rightarrow color shift & unnatural looking

 $H(i) = \sum_{j=0}^{i} h(i)$

 $h(i) = \sum_{(x,y)} \begin{cases} 1 & \text{if } f(x,y) = i \\ 0 & \text{otherwise} \end{cases}$

□ Histogram Equalization

- \blacksquare Histogram $h(i)$
- **Cumulative histogram** $H(i)$
- **Equalization function** $m(i)$

Enhance only intensity in color images

 \checkmark Prevent from distorting chromatic information

Original

Only L-channel

All channels

Adaptive histogram equalization

- Local enhancement
- \checkmark Histogram equalization in each small block separately

Q Unsharp Masking

Windowing (Original Image – Unsharp Image)

= Windowing (Original Image – Low-Pass Filtered Image)

windowing \bigcirc - \bigcirc $\left(1\right)$ $^\copyright$ $m(i) = D_{\min} + (i - I_{\min}) \frac{D_{\max} - I}{I}$

Unsharp Masking for Color Images

- \checkmark Unsharp masking for each channel separately
- \checkmark The same windowing for color channels to avoid hue shift

□ Sharpening Concept

□ Constant Variance Enhancement

Enhance visual significance of local changes

$$
g(x, y) = \frac{f(x, y) - \overline{f}(x, y)}{\sigma(x, y)} + k \overline{f}(x, y), \quad k \in [0..1]
$$

where $\sigma(x, y) = \sum_{(i,j)} (f(x - i, y - j) - \overline{f}(x, y))^2$

$$
g(x, y) = \frac{f(x, y) - \overline{f}(x, y)}{\sigma(x, y)} + k\mu(x, y), \quad k \in [0..1]
$$

where $\mu(x, y) = \text{global mean of input image}$

■ For color images, apply the same contrast boost to each color channel: use average of local deviations for $\sigma(x, y)$

□ Other enhancement methods

- \blacksquare $m(i)$ = log *i* for emphasizing low values
- \blacksquare $m(i) = i^p$ with $p > 1$ for emphasizing high values
- High-pass or band-pass filtering in frequency domain
- Homomorphic filtering
- \blacksquare etc
- □ Enhancement of Color Images
	- \blacksquare Treat each color channel separately
	- Need special care for avoiding color shift
		- \checkmark Use the same amount of enhancement in each channel
		- \checkmark Enhance only the intensity

Summary

Q Noise Removal

- Noise Models
- **Binomial Smoothing**
- Gaussian Smoothing
- Median Filtering, etc
- □ Contrast Enhancement
	- Windowing
	- **Histogram Equalization**
	- **Unsharp Masking**
	- Contrast Variance Enhancement, etc

Q & A

Thank You!

Nov 13, 2020 *07010667 Digital Image Processing*

40